University of California

Nitrogen Management Training for Certified Crop Advisers

Nitrogen Management in Tomatoes and Melons

University of **California** Agriculture and Natural Resources

N Loss Pathways in Agricultural Systems:

Growth and N Demand Rates in Tomatoes and Melons

Characteristic Growth Pattern

N Accumulation: Tomato

• N accumulation follows the same pattern as growth:

Data from four high-yield fields

N Uptake: Cantaloupe

• N uptake follows the same pattern as growth:

Data from 3 high-yield hybrid cantaloupe fields

Nutrient Partitioning in Fruiting Crops:

• N partitioning by processing tomato:

General rule:

In fruiting crops, fruit typically represents 50-70% of total crop N uptake

N Uptake in Tomatoes and Melons

N Uptake: Fruiting Crops

N Uptake Rates: Tomatoes

Individual fields can differ widely in nutrient uptake:

	Fruit yield	Crop N uptake (lb/acre)		
	Tons/acre	vine	fruit	total
Field 1	53	65	179	244
Field 2	56	168	198	366
Field 3	58	139	150	289
Field 4	58	145	148	293

'Luxury uptake'

- nutrient uptake that neither increases yield nor product quality
- often 10-20% of the total crop N uptake, sometimes more

N Uptake Rates: Tomatoes

	Crop type	lb N / ton of fresh weight	
	Fruiting	Cantaloupe	3.0
		Honeydew	2.1
1		Pepper	3.2
		Tomato	3.1
		Watermelon	2.0
	Vegetative	Broccoli	11.6
		Lettuce	4.0

Field-Specific N Management In Tomatoes and Melons

- Other N Credits
- Tissue Testing

Field-Specific N Management:

Soil Nitrate Testing in Tomatoes

Commercial processing tomato fields:

- Soil residual NO₃-N varied from 23-219 lb/acre, averaged 80 lb/acre
- Grower N application did not reflect this difference; ranged from 115-320 lb/acre, averaged 190 lb/acre

Field-Specific N Management: Contribution of Prior Crop Residue

In general, more than 90 days after soil incorporation, crop residue N behaves similarly to that of existing soil organic N

Plant Tissue Testing:

Leaf Total N Monitoring, Tomato Example

• Advantages of leaf total N: changes slowly

	lb N/acre				
	Total plant		Daily uptake as %		
Growth stage	N content	N uptake/day	of biomass N		
Early bloom	25	1	4		
Mid fruit set	80	3.5	4		
First red fruit	160	4.5	3		

Leaf total N substantially above the sufficiency level indicates sufficient biomass N to accommodate 7+ days of crop growth

Plant Tissue Testing:

Leaf Total N Monitoring, Tomato Example

• Limitation of leaf total N: doesn't reflect soil N availability until the high N uptake period, so it is a flawed guide to early season N fertilizer need

Nitrogen Management Training for Certified Crop Advisers

Contributing Authors: Tim Hartz, Extension Specialist/Agronomist UC Davis