Determining Factors for Eurasian watermilfoil
(M. spicatum) Spread in and around
Lake Tahoe, CA-NV

Bruce Kendall¹, Sally MacIntyre²
¹Environmental Science and Management, ²Ecology Evolution and Marine Biology
University of California, Santa Barbara

Invasive aquatic species pose serious ecological and economic threats to lakes, reservoirs
and rivers. This study investigates vectors of introduction of aquatic nuisance species in
California and Nevada’s water bodies. Our findings show that lakes and reservoirs in
California and Nevada are connected by way of recreational and transient boating, which is a
major source of non-native species introductions.

Rivers, lakes and reservoirs are among the
most invaded environments in the world; recreational boaters are a major source of
non-native species introduction both within and between fresh water bodies. Boaters
use California’s waterways intensely, and create significant potential for the spread of
non-native species such as Eurasian watermilfoil (Myriophyllum spicatum). New
aquatic nuisance species (ANS, such as the Quagga mussel) regularly appear in neighbor-
boring states, so California’s waters are at constant risk of further invasion.

This research investigates patterns of Eur-
asian watermilfoil spread within Lake Tahoe,
as well as to water bodies connected to
Lake Tahoe via recreational boating. Lake
Tahoe receives a high amount of boat traf-
ic, and is centrally located in proximity to a
number of popular lakes in California and
Nevada. Eurasian watermilfoil is estimated
to have arrived along the south shore of
Lake Tahoe during the 1960’s and has
since spread to numerous locations around
the lake.

We are exploring the following: (1) What are
the processes of spread within a lake; i.e., is
watermilfoil limited by available habitat or by
dispersal mechanisms? (2) What other
water bodies are Lake Tahoe boaters
using? Do they act as potential sources of
aquatic invasion? (3) Are there recognizable
travel patterns for boaters in this region?
What impact do these patterns have on
invasion risk? (4) Are boaters aware of
damages associated with invasive species?

During the 2005-2006 boating seasons
approximately 800 boater interviews were
carried out at 7 Lake Tahoe boat launch
facilities, collecting information regarding
lakes visited before and after present use,
travel within Lake Tahoe, invasive species
awareness, boat cleaning habits, and vessel
inspections for vegetation caught on boats

Figure 1. County originations for Tahoe boaters
and equipment. A survey of Lake Tahoe for Eurasian watermilfoil and Curly pondweed was carried out with the USDA Exotic and Invasive Plant Unit. Additionally, sediment and water quality testing of 13 popular boating destinations assessed habitat appropriateness for potential colonization. In 2007, similar sediment and water quality assessments were carried out at the top 10 visited water bodies in CA and NV as indicated by the 2005-06 boater interviews. These assessments also included surveys for other high risk invaders such as the New Zealand Mudsnail, Quagga mussel, and Curly pondweed at lake access points.

Findings of these efforts include: Lake Tahoe boaters originate from a large geographic range (Figure 1), and have previous use in water bodies with known aquatic invaders, including Western reservoirs known to have established populations of Quagga mussel; 15% of boats leaving Lake Tahoe carry invasive plant species fragments on equipment; some habitats within Lake Tahoe may limit the establishment and growth of Eurasian watermilfoil because of wave action and sediment quality, other habitats in the lake are appropriate for Eurasian watermilfoil growth – suggesting that the invasion is still in progress; Eurasian watermilfoil and Curlyleaf pondweed continue to spread in Lake Tahoe; a majority of Lake Tahoe boaters never conduct visual inspection of boats or boating equipment for ANS; a number of California and Nevada lakes contain ANS that have not been previously reported.

Professional Presentations
Wittmann, Marion, E., Pathways for Aquatic Invasive Species, Western Aquatic Plant Man. Society, Lake Tahoe CA, March 2008.

Collaborative Efforts
Researchers from the USDA Agricultural Research Service assisted with this study: Bob Blank (Soil Science Lab) provides sediment quality analysis; Lars Anderson (Aquatic Plant Research Lab) has provided survey data and culture tanks. The UC Davis Tahoe Environmental Research Center provided data, facilities, field assistance, and instrumentation. University of Nevada, Reno researchers provided field assistance.

For further information please contact:

Bruce Kendall
kendall@bren.ucsb.edu
805-893-7539
http://www.bren.ucsb.edu/~kendall

Sally MacIntyre
sally@icess.ucsb.edu
805-893-3951
http://www.lifesci.ucsb.edu

Marion Wittmann
mwittmann@ucdavis.edu
775-881-7560 x7402
Tahoe Environmental Research Center
UC Davis