Basic Physical, Chemical, and Biological Factors Affecting N Transport in Soils

Laosheng Wu
CE Water Management Specialist
University of California, Riverside

Contents

- N cycle and transformation processes
- N sources and plant uptake
- N transport and leaching
- Irrigation/water management effect on nitrate leaching
- Summary

Nitrogen Sources

- Global extent--introduction to terrestrial system from atmosphere: symbiotic fixation, lightening, commercial fertilizer.
- Site specific--all of above, animal waste, inherent soil sources.

Nitrogen Transformation

- Mineralization:
 - organic to mineral form: Org-N to NH₄+ (weeks to years)
- Nitrification:
 - -From NH₄⁺ to NO₃⁻ (rapid, days)
 - Done by selective bacteria in presence of oxygen

Nitrogen Transformation

- Denitrification
 - $-NO_3^- \rightarrow NO_2 \rightarrow N_2O\uparrow \rightarrow N_2\uparrow$ (rapid, days)
 - Need bacteria done in absence of oxygen
- Immobilization
 - -NH₄⁺ or NO₃⁻ to plant

Nitrogen Transformation

- Ammonia volatilization
 - NH₃↑ from animal waste
 - NH_4 ⁺ in alkaline solution → NH_3 ↑
- Emission from combustion engines and transformed in the atmosphere.

Nitrogen Transport in Soil & Water

- Organic: not very mobile
- NH₄+: not very mobile, electrostatic attraction to soil
- NO₃⁻: very mobile, repelled by negative surfaces, soluble in water R ≈ I.

N Transport to Roots

 Convection – N moves to root surface through water flux (driven by ET).

 Diffusion – When N supply by convection is not sufficient, N concentration at the root surface is lower than the soil solution, concentration gradient develops.

N Management Goal

The rate of plant available N supply to be equal to the rate of plant uptake.

N Sources and Release Rates

- Consider all N input sources:
 - Soil N

- Atmosphere

- Irrigation

- Fertilizers

- N Release
 - Typically, Org-N releases fastest when incorporated into soil and tends to decrease exponentially.
 - Slow release N fertilizers behave similarly to org-N, but with higher release rates.

Nitrate Leaching

- Leaching: NO₃⁻ (lb) = C (lb/Ac-in) x Deep Percolation (Ac-in)
- Nitrate concentration: Higher conc., greater potential for leaching.
- Water Management: Excess water moving out of the root zone
- Excess water, N supply > crop demand, lower water holding capacity promotes nitrate leaching!

Irrigation Management

- ET_o (climate based)
- Water application rate according to soil infiltration capacity
- Timing and frequency vs. soil water holding capacity
- Uniformity

Irrigation Uniformity & Water Management

- Higher uniformity reduces water application and leaching potential
- Irrigation based on CIMIS
 ETa = Kc * ETo
 - Generic, ignore specific conditions such as N deficiency and high salinity

Irrigation uniformity affects leaching

Percolation right below the root zone as influenced by DU

Effect of Plant Growth on Leaching

Effect of soil on leaching: Water retention capacity

Ranges of available water for three soil textural groups

Textural group

Coarse (sand, loamy sand, sandy loam)

Medium (fine sandy loam, loam, silt loam)

Fine (clay loam, silty clay loam, clay)

Available water (in./ft)

1/4 to 1/2

1 to 2

1½ to 3

^{*} Allowable depletion

Summary: Fertilizer Application

- Try to match N supply to N demand as much as possible.
- Applying less fertilizer but more frequently, especially in soils of high leaching potential (sandy soils).
- Use new technologies to improve N utilization rate.

Summary: Irrigation Management

- Improve irrigation uniformity
- Avoid applying excess water to generate deep percolation
- If leaching is necessary to control soil salinity, leach the soil while soil residual N is low.
- Upgrade irrigation system.

Summary

To reduce nitrate leaching potential, one should consider:

- -soil conditions,
- plant characteristics, and
- -irrigation practices.