Basic Physical, Chemical, and Biological Factors Affecting N Transport in Soils

Laosheng Wu
CE Water Management Specialist
University of California, Riverside
Contents

• N cycle and transformation processes
• N sources and plant uptake
• N transport and leaching
• Irrigation/water management effect on nitrate leaching
• Summary
Nitrogen Sources

- **Global extent**—introduction to terrestrial system from atmosphere: symbiotic fixation, lightening, commercial fertilizer.

- **Site specific**—all of above, animal waste, inherent soil sources.
Nitrogen Transformation

- **Mineralization:**
 - organic to mineral form: Org-N to \(\text{NH}_4^+ \) (weeks to years)

- **Nitrification:**
 - From \(\text{NH}_4^+ \) to \(\text{NO}_3^- \) (rapid, days)
 - Done by selective bacteria in presence of oxygen
Nitrogen Transformation

• Denitrification
 – $\text{NO}_3^- \rightarrow \text{NO}_2 \rightarrow \text{N}_2\text{O} \uparrow \rightarrow \text{N}_2 \uparrow$ (rapid, days)
 – Need bacteria done in absence of oxygen

• Immobilization
 – NH_4^+ or NO_3^- to plant
Nitrogen Transformation

• Ammonia volatilization
 – $\text{NH}_3 \uparrow$ from animal waste
 – NH_4^+ in alkaline solution $\rightarrow \text{NH}_3 \uparrow$

• Emission from combustion engines and transformed in the atmosphere.
Nitrogen Transport in Soil & Water

- **Organic**: not very mobile
- **NH\textsubscript{4}^+**: not very mobile, electrostatic attraction to soil
- **NO\textsubscript{3}^-**: very mobile, repelled by negative surfaces, soluble in water $R \approx 1$.
N Transport to Roots

- **Convection** – N moves to root surface through water flux (driven by ET).

- **Diffusion** – When N supply by convection is not sufficient, N concentration at the root surface is lower than the soil solution, concentration gradient develops.
N Management Goal

The rate of plant available N supply to be equal to the rate of plant uptake.
Org-N release rate (not on scale)
N Sources and Release Rates

• Consider all N input sources:
 - Soil N
 - Atmosphere
 - Irrigation
 - Fertilizers

• N Release
 – Typically, Org-N releases fastest when incorporated into soil and tends to decrease exponentially.
 – Slow release N fertilizers behave similarly to org-N, but with higher release rates.
Nitrate Leaching

- **Leaching**: \(\text{NO}_3^- \text{ (lb)} = C \text{ (lb/Ac-in)} \times \text{Deep Percolation (Ac-in)} \)

- **Nitrate concentration**: Higher conc., greater potential for leaching.

- **Water Management**: Excess water moving out of the root zone

- Excess water, N supply > crop demand, lower water holding capacity promotes nitrate leaching!
Irrigation Management

- ET_0 (climate based)
- Water application rate according to soil infiltration capacity
- Timing and frequency vs. soil water holding capacity
- Uniformity
Irrigation Uniformity & Water Management

• Higher uniformity reduces water application and leaching potential

• Irrigation based on CIMIS
 \[ET_a = K_c \times E_To \]
 – Generic, ignore specific conditions such as N deficiency and high salinity
Irrigation uniformity affects leaching

Root depth
Percolation right below the root zone as influenced by DU

- **Percolation (cm)**
- **DU**
 - 0.25
 - 0.45
 - 0.65
 - 0.85
 - 1.05

Soils:
- Sand
- Sandy loam
- Silty clay loam
Effect of Plant Growth on Leaching

- Less nitrogen
 - More N leaching
 - More deep percolation
- Less plant growth
 - Less ET

- Less ET
Effect of soil on leaching: Water retention capacity

Water Content (v/v)

Available Water

Field capacity

Residual water content

Tension (Bar)
Ranges of available water for three soil textural groups

<table>
<thead>
<tr>
<th>Textural group</th>
<th>Available water (in./ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse (sand, loamy sand, sandy loam)</td>
<td>¼ to ½</td>
</tr>
<tr>
<td>Medium (fine sandy loam, loam, silt loam)</td>
<td>1 to 2</td>
</tr>
<tr>
<td>Fine (clay loam, silty clay loam, clay)</td>
<td>1½ to 3</td>
</tr>
</tbody>
</table>

* Allowable depletion
Summary: Fertilizer Application

- Try to match N supply to N demand as much as possible.
- Applying less fertilizer but more frequently, especially in soils of high leaching potential (sandy soils).
- Use new technologies to improve N utilization rate.
Summary: Irrigation Management

• Improve irrigation uniformity
• Avoid applying excess water to generate deep percolation
• If leaching is necessary to control soil salinity, leach the soil while soil residual N is low.
• Upgrade irrigation system.
Summary

To reduce nitrate leaching potential, one should consider:

– soil conditions,
– plant characteristics, and
– irrigation practices.